Abstract

This paper investigates the distributed state estimation problem for a linear time-invariant system characterized by fading measurements and random link failures. We assume that the fading effect of the measurements occurs slowly. Additionally, communication failures between sensors can affect the state estimation performance. To this end, we propose a Kalman filtering algorithm composed of a structural data fusion stage and a signal date fusion stage. The number of communications can be decreased by executing signal data fusion when a global estimate is required. Then, we investigate the stability conditions for the proposed distributed approach. Furthermore, we analyze the mismatch between the estimation generated by the proposed distributed algorithm and that obtained by the centralized Kalman filter. Lastly, numerical results verify the feasibility of the proposed distributed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call