Abstract

Multiple vehicles control at an intersection is one of the most challenging scenarios in the vehicle control field due to the high number of constraints. However, regarding the control strategies of an isolated intersection, few studies have considered the longitudinal-lateral dynamics comprehensively. In the approaches that treat the turning curve as a straight line, a longitudinal dynamic model is adopted, while the lateral execution ability is ignored. The ideal decisions that ignore vehicle dynamics are not accurately executed by actual vehicles, as doing so would be futile. In addition, due to the strong coupling and nonlinearity of the longitudinal-lateral dynamics model, the optimization problem is difficult to solve. Therefore, in this paper, a reasonable model, the simplified vehicle dynamics model coupled with longitudinal-lateral dynamics is used to describe longitudinal, lateral, and yaw motions comprehensively. Optimization of the longitudinal and lateral control of each vehicle is realized simultaneously. The multi-objective optimization problem is decomposed and solved by each vehicle utilizing model predictive control (MPC) in a distributed manner. A novel safety constraint interpretive method (SCIM) is proposed to reduce the number of constraints and facilitate the solution by converting the safety constraint. The asymptotic stability of a local closed-loop system is guaranteed by a terminal constraint, and the global feasibility is proven. Finally, a demanding intersection scenario, with comparison between the Proportional-Integral-Derivative (PID) method and Adaptive Cruise Control (ACC) method, is carried out in a Processor-in-the-Loop (PiL) test. The results demonstrate that intersection safety is guaranteed with smoother control inputs obtained by the designed distributed method. The control inputs are more suitable for vehicle execution, especially in turning maneuvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.