Abstract

Condition monitoring systems capable of efficiently and accurately diagnosing and identifying faults is a current need for ensuring the proper operation of critical systems. Distributed health monitoring leveraging large sensor networks that provide validated data ensures the proper operation and performance of systems. A key consideration is to have non-intrusive embedded sensors that can be easily added or removed. These needs have motivated the realization of a distributed intelligent health monitoring framework described in this paper based on standardized methods, advanced health monitoring functions at the sensor and system levels, and a state-of-the-art low-power miniature smart sensor (termed the coremicro Reconfigurable Embedded Smart Sensor Node). Major involved technologies consist of: (a) miniature embedded hardware; (b) embedded sensor health monitoring functions (e.g. sensor self-diagnostics, self-healing, and calibration); (c) distributed and intelligent health monitoring at the various system levels; (d) standardized design and communications leveraging the IEEE 1451 standards; and (e) an efficient anomaly awareness mechanism that merges the health monitoring and standardized design aspects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call