Abstract

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defined based on previously calculated signal to noise ratio (SNR), is assumed to be the informed nodes that collect data and perform in-network processing, while the remaining nodes are assumed to be uninformed and only participate in the processing tasks. As our simulation results show, the proposed algorithm not only considerably improves the performance of the Distributed Incremental LMS algorithm in a same condition, but also proves a good accuracy of estimation in cases where some of the nodes make unreliable observations (noisy nodes). Also studied is the application of the same algorithm on the cases where node failure happens

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.