Abstract

A distributed binary hypothesis testing problem, in which multiple observers transmit their observations to a detector over noisy channels, is studied. Together with its own observations, the goal of the detector is to decide between two hypotheses for the joint distribution of the data. Single-letter upper and lower bounds on the optimal type 2 error exponent (T2-EE), when the type 1 error probability vanishes with the block-length are obtained. These bounds coincide and characterize the optimal T2-EE when only a single helper is involved. Our result shows that the optimal T2-EE depends on the marginal distributions of the data and the channels rather than their joint distribution. However, an operational separation between HT and channel coding does not hold, and the optimal T2-EE is achieved by generating channel inputs correlated with observed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.