Abstract
Abstract A distributed hydrologic model is used to evaluate how runoff mechanisms—including infiltration excess (RI), saturation excess (RS), and groundwater exfiltration (RG)—influence the generation of streamflow and evapotranspiration (ET) in a mountainous region under the influence of the North American monsoon (NAM). The study site, the upper Sonora River basin (~9350 km2) in Mexico, is characterized by a wide range of terrain, soil, and ecosystem conditions obtained from best available data sources. Three meteorological scenarios are compared to explore the impact of spatial and temporal variations of meteorological characteristics on land surface processes and to identify the value of North American Land Data Assimilation System (NLDAS) forcing products in the NAM region. The following scenarios are considered for a 1-yr period: 1) a sparse network of ground-based stations, 2) raw forcing products from NLDAS, and 3) NLDAS products adjusted using available station data. These scenarios are discussed in light of spatial distributions of precipitation, streamflow, and runoff mechanisms during annual, seasonal, and monthly periods. This study identified that the mode of runoff generation impacts seasonal relations between ET and soil moisture in the water-limited region. In addition, ET rates at annual and seasonal scales were related to the runoff mechanism proportions, with an increase in ET when RS was dominant and a decrease in ET when RI was more important. The partitioning of runoff mechanisms also helps explain the monthly progression of runoff ratios in these seasonally wet hydrologic systems. Understanding the complex interplay between seasonal responses of runoff mechanisms and evapotranspiration can yield information that is of interest to hydrologists and water managers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.