Abstract

We present two novel distributed algorithms for hole detection in a wireless sensor network (WSN) based on the distributed Delaunay triangulation of the underlying communication graph. The first, which we refer to as the distance-vector hole determination (DVHD) algorithm, is based on traditional distance vector routing for multi-hop networks and shortest path lengths between node pairs. The second, which we refer to as the Gaussian curvature-based hole determination (GCHD) algorithm, applies the Gauss-Bonnet theorem on the Delaunay graph to calculate the number of holes based on the graph's Gaussian curvature. We present a detailed comparative performance analysis of both methods based on simulations, showing that while DVHD is conceptually simpler, the GCHD algorithm shows better performance with respect to run-time and message count per node.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.