Abstract

By prior work, it is known that any distributed graph algorithm that finds a maximal matching requires Ω(log⁎⁡n) communication rounds, while it is possible to find a maximal fractional matching in O(1) rounds in bounded-degree graphs. However, all prior O(1)-round algorithms for maximal fractional matching use arbitrarily fine-grained fractional values. In particular, none of them is able to find a half-integral solution, using only values from {0,12,1}. We show that the use of fine-grained fractional values is necessary, and moreover we give a complete characterization on exactly how small values are needed: if we consider maximal fractional matching in graphs of maximum degree Δ=2d, and any distributed graph algorithm with round complexity T(Δ) that only depends on Δ and is independent of n, we show that the algorithm has to use fractional values with a denominator at least 2d. We give a new algorithm that shows that this is also sufficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.