Abstract

This paper investigates the distributed H ∞ consensus filtering issue for a class of distributed parameter systems with bounded disturbance. In a framework of optimizing performance, a new approach to improving filter performance is proposed by employing mobile sensor networks. Moreover, the information missing in mobile sensor networks is modeled as a conditional probability distribution. The aim of the filtering challenge is to construct a distributed consensus filter such that the filtering error system is globally asymptotically stable in the mean square, and what disturbances do to the estimation accuracy is attenuated at the H ∞ consensus performance level. Utilizing the Lyapunov direct approach and the spatial operator technique, several sufficient criteria are given for the proposed filter to satisfy the H ∞ consensus performance constraint. Finally, a numerical simulation is given to demonstrate the effectiveness of the design scheme of the proposed filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.