Abstract

LTSMIN provides a framework in which state space generation can be distributed easily over many cores on a single compute node, as well as over multiple compute nodes. The tool works on the basis of a vector representation of the states; the individual cores are assigned the task of computing all successors of states that are sent to them. In this paper we show how this framework can be applied in the case where states are essentially graphs interpreted up to isomorphism, such as the ones we have been studying for GROOVE. This involves developing a suitable vector representation for a canonical form of those graphs. The canonical forms are computed using a third tool called BLISS. We combined the three tools to form a system for distributed state space generation based on graph grammars. We show that the time performance of the resulting system scales well (i.e., close to linear) with the number of cores. We also report surprising statistics on the memory consumption, which imply that the vector representation used to store graphs in LTSMIN is more compact than the representation used in GROOVE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.