Abstract

High penetration of renewable distributed generations is one of the most current challenges of electric distribution networks due to resources uncertainties, and hosting capacity limitation of the networks. The challenges may be more critical when uncertainties are highly correlated. The effect of correlated uncertainties of wind speed and load on the distributed generation hosting capacity of distribution networks is evaluated. A combination of point estimation method, and inverse Nataf transformation is proposed for correlated uncertainties modelling. The efficiency of some ANM schemes on the hosting capacity improvement is also studied in the presence of correlated uncertainties. To do so, an optimisation framework with the objective of maximising the installed capacity of distributed generation subject to network operational constraints such as voltage deviation is proposed. The proposed optimisation problem is formulated in a mixed-integer quadratically constrained program form, and is solved via CPLEX solver. The proposed method is implemented on the 33-bus standard test system. The results demonstrate the significant effect of the correlation between uncertainties on the distributed generation hosting capacity of network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.