Abstract

The smart distribution system architecture provides value-based control techniques that facilitate bi-directional power flows and energy transactions. Although consensus and understanding continue to develop around peer-to-peer transactions, a distribution system operator aims to promote and enable interoperability among entities, particularly those who own distributed energy resources such as energy storage system (ESS) and distributed generation (DG). In this study, the authors address the optimal allocation of ESS and DG in the smart distribution system architecture, in order to help the integration of wind energy. The formulated objective is to minimise the sum of the annualised investment cost, the expected profit and the imbalance cost in the two-stage of power scheduling. The proposed model is verified on the modified IEEE 15-bus distribution radial system. The simulation results have verified the proposed planning approach. Also, results show that a more risk-seeking operation strategy is recommended if wind power penetration increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.