Abstract
This paper focuses on the distributed fuzzy learning sliding mode cooperative control issue for non-affine nonlinear multi-missile guidance systems. The dynamics of each follower is non-affine form with unknown lumped factor. To estimate the unknown lumped factor, a generalized fuzzy hyperbolic model (GFHM) based prescribed performance observer (PPO) is proposed. Different from the traditional disturbance observers, a residual set of error transient behavior is incorporated additionally so that the peak phenomenon can be avoided. Meanwhile, an auxiliary system is employed to convert the system of each follower to augmented affine form. Then, a distributed fuzzy learning sliding mode cooperative control approach is designed which consists of two parts. The adaptive sliding mode control (SMC) part is designed to force the states to move along the predefined integral sliding surface. For the equivalent sliding dynamics, the distributed optimal control part with GFHM is developed to minimize the cooperative performance function. Thus, the stability and the optimality of the closed-loop system are guaranteed synchronously. Finally, all signals of closed-loop system are rigorously proved bounded and the multi-missile cooperative guidance scenario is applied to verify the effectiveness of proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.