Abstract
The cloud radio access network (C-RAN) is a promising network architecture for future mobile communications, and one practical hurdle for its large scale implementation is the stringent requirement of high capacity and low latency fronthaul connecting the distributed remote radio heads (RRH) to the centralized baseband pools (BBUs) in the C-RAN. To improve the scalability of C-RAN networks, it is very important to take the fronthaul loading into consideration in the signal detection, and it is very desirable to reduce the fronthaul loading in C-RAN systems. In this paper, we consider uplink C-RAN systems and we propose a distributed fronthaul compression scheme at the distributed RRHs and a joint recovery algorithm at the BBUs by deploying the techniques of distributed compressive sensing (CS). Different from conventional distributed CS, the CS problem in C-RAN system needs to incorporate the underlying effect of multi-access fading for the end-to-end recovery of the transmitted signals from the users. We analyze the performance of the proposed end-to-end signal recovery algorithm and we show that the aggregate measurement matrix in C-RAN systems, which contains both the distributed fronthaul compression and multiaccess fading, can still satisfy the restricted isometry property with high probability. Based on these results, we derive tradeoff results between the uplink capacity and the fronthaul loading in C-RAN systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.