Abstract

Multi-terminal DC transmission (MTDC) systems have attracted much attention due to their significant advantages in long-distance and high-capacity transmission. To improve their reliability and operation performance, a distributed fixed-time secondary control of frequency restoration and active power sharing is proposed under event-triggered communication, which only depends on the states of each AC grid and its neighbors. By utilizing Lyapunov theory, we prove that the MTDC system with the fixed-time secondary control can be stable in a settling time, and the conditions of the settling time are established for fixed-time algorithms. In addition, we simulate a five-terminal MTDC system in Matlab/Simulink. Several cases of MTDC systems are exhibited to showcase how well the suggested controller works when dealing with load changes and attacks. The comparison of the number of event-triggered instants shows that the proposed control method can effectively reduce communication resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.