Abstract

This work addresses the issue of multi-agent system (MAS) formation control under external disturbances and a directed communication topology. Firstly, a new disturbance observer is proposed to effectively reconstruct and compensate for external disturbances within a short period of time. Then, the integral terminal sliding mode technology is introduced to devise a novel distributed formation control protocol, ultimately realizing the stability of the MAS within a fixed time. Moreover, by means of rigorous Lyapunov theory analyses, a faster formation convergence rate and more accurate consensus accuracies are achieved in the proposed fixed-time strategy with variable exponent form. Finally, the formation tracking control scheme is applied to a multi-wheeled mobile robot (WMR) system. The experimental results strongly support the fine effectiveness of the control scheme designed in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call