Abstract

This paper investigates a distributed finite-time event-triggered bipartite consensus control for multi-agent systems. Under scenarios of energy limitation, an event-triggered strategy coupled with a nonlinear distributed control protocol is proposed only relying on local information, where the controller only updates at triggered instants. We proved that when the antagonistic network contains a spanning tree, the event-triggered controller can drive all agents to reach consensus value with an identical magnitude but opposite signs. Moreover, both the convergence time depending on the initial state and the positive lower bound of inter-event times are achieved. Simulation results show that the proposed controller has better disturbance rejection properties and can achieve bipartite consensus faster compared to an asymptotic controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call