Abstract

In this paper we develop a multi-agent distributed algorithm to solve a quadratic programming problem with linear time-varying constraints. In more detail, we first solve the frozen-time optimization problem, providing a necessary and sufficient global optimality condition. Then, based on such condition we develop a continuous-time nonsmooth algorithm that is able to track the time-varying global optimal solution in finite-time. The proposed algorithm requires 2-hop neighborhood information that can be estimated by resorting to a state-of-the art finite-time k-hop distributed observer which can be implemented using only 1-hop information. Numerical results are provided to corroborate the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.