Abstract

The paper presents a distributed finite-time controller for multiple under-actuated spacecraft with flexible appendages to track a virtual leader with stationary states under an undirected communication graph. Each spacecraft of concern is simplified as a free-floating hub-beam system, which is an under-actuated Euler-Lagrange system by nature since only the hub is driven. In the undirected communication graph, it is assumed that only one spacecraft can receive the information from the virtual leader. A distributed finite-time control law is presented for such a multi-agent system. The closed-loop system is proven to converge to the desired states within a finite time via Lyapunov theory and homogeneous method. Finally, a comparison is made between the proposed controller and the PD controller to show the better performance of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.