Abstract

Over the past decade, significant technological advancements have led to a substantial increase in data proliferation. Both scientific computation and Big Data workloads play a central role, manipulating massive data and challenging conventional high-performance computing architectures. Efficiently processing voluminous files using cost-effective hardware remains a persistent challenge, limiting access to new technologies for individuals and organizations capable of higher investments. In response to this challenge, AwareFS, a novel distributed file system, addresses the efficient reading and updating of large files by consistently exploiting data locality on every copy. Its distributed metadata and lock management facilitate sequential and random I/O patterns with minimal data movement over the network. The evaluation of the AwareFS local-write protocol demonstrated efficiency across various update patterns, resulting in a performance improvement of approximately 13%, while benchmark assessments conducted across diverse cluster sizes and configurations underscored the flexibility and scalability of AwareFS. The innovative distributed mechanisms outlined herein are positioned to contribute to the evolution of emerging technologies related to the computation of data stored in large files.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.