Abstract

In the field of fiber-optic sensing technology, distributed sensors that return a value of the measurand as a function of linear position along an optical fiber are regarded as a promising sensor which can be applied to structural health monitoring (SHM). We have developed a distributed strain sensing technique using long gauge fiber Bragg grating (FBG) based on optical frequency domain reflectometry (OFDR). FBGs functioning as mirrors with wavelengthselective reflectivity have been used as strain or temperature sensors. OFDR is a technique designed to measure backreflections from optical fiber networks and components. In our system, we use a longer gauge FBG whose length is ordinarily more than 100 mm and we can measure strain at an arbitrary position along the FBG. Therefore, we can obtain continuous strain data along the FBG. Furthermore, since the spatial resolution in strain measurements is less than 1 mm, it enables us to measure the strain distribution of stress concentrated area, such as welded and bonded joints, precisely. In this paper, we describe the principle of the distributed sensing technique based on OFDR and the applications to strain monitoring of a bonded joint and a wing box structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.