Abstract
Because the existing approaches for diagnosing sensor networks lead to low precision and high complexity, a new fault detection mechanism based on support vector regression and neighbor coordination is proposed in this work. According to the redundant information about meteorological elements collected by a multisensor, a fault prediction model is built using a support vector regression algorithm, and it achieves residual sequences. Then, the node status is identified by mutual testing among reliable neighbor nodes. Simulations show that when the sensor fault probability in wireless sensor networks is 40%, the detection accuracy of the proposed algorithm is over 87%, and the false alarm ratio is below 7%. The detection accuracy is increased by up to 13%, in contrast to other algorithms. This algorithm not only reduces the communication to sensor nodes but also has a high detection accuracy and a low false alarm ratio. The proposed algorithm is suitable for fault detection in meteorological sensor networks with low node densities and high failure ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.