Abstract

Distributed mechanisms for allocating indivisible goods are mechanisms lacking central control, in which agents can locally agree on deals to exchange some of the goods in their possession. We study convergence properties for such distributed mechanisms when used as fair division procedures. Specifically, we identify sets of assumptions under which any sequence of deals meeting certain conditions will converge to a proportionally fair allocation and to an envy-free allocation, respectively. We also introduce an extension of the basic framework where agents are vertices of a graph representing a social network that constrains which agents can interact with which other agents, and we prove a similar convergence result for envy-freeness in this context. Finally, when not all assumptions guaranteeing envy-freeness are satisfied, we may want to minimise the degree of envy exhibited by an outcome. To this end, we introduce a generic framework for measuring the degree of envy in a society and establish the computational complexity of checking whether a given scenario allows for a deal that is beneficial to every agent involved and that will reduce overall envy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.