Abstract

This paper studies the problem of averaging-based extremum seeking in dynamical multi-agent systems with time-varying communication graphs. We consider a distributed consensus-optimization problem where the plants and the controllers of the agents share information via time-varying graphs, and where the cost function to be minimized corresponds to the summation of the individual response maps generated by the agents. Although the problem of averaging-based extremum seeking control in multi-agent dynamical systems with time-invariant graphs has been extensively studied, the case where the graph is time-varying remains unexplored. In this paper we address this problem by making use of recent results for generalized set-valued hybrid extremum seeking controllers, and the framework of switched differential inclusions and common Lyapunov functions. For the particular consensus-optimization problem considered in this paper, a semi-global practical stability result is established. A numerical example in the context of dynamic electricity markets illustrates the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.