Abstract
Queueing network capacity planning can become algorithmically intractable for moderately large networks. It is, therefore, a promising application area for expert systems. However, a survey of the published literature reveals a paucity of integrated systems combining design and optimization of network-based problems. We present a distributed expert system for network capacity planning, which uses Monte Carlo simulation-based optimization methodology for queueing networks. Our architecture admits parallel simulation of multiple configurations. A knowledge-based search drives the performance optimization of the network. The search process is a randomized combination of steepest descent and branch and bound algorithms, where the generating function of new states uses qualitative reasoning, and the gradient of the objective function is estimated using a heuristic score function method. We found a random search based on the relative order of the performance gradient components to be a powerful qualitative reasoning technique. The system is implemented as a loosely coupled expert system with components written inProlog, Simscript and C. We demonstrate the efficacy of our approach through an example from the domain of Jackson queueing networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.