Abstract

Localization of acoustic sources has attracted a considerable amount of research attention in recent years. A major obstacle to achieving high localization accuracy is the presence of reverberation, the influence of which obviously increases with the number of active speakers in the room. Human hearing is capable of localizing acoustic sources even in extreme conditions. In this study, we propose to combine a method based on human hearing mechanisms and a modified incremental distributed expectation-maximization (IDEM) algorithm. Rather than using phase difference measurements that are modeled by a mixture of complex-valued Gaussians, as proposed in the original IDEM framework, we propose to use time difference of arrival measurements in multiple subbands and model them by a mixture of real-valued truncated Gaussians. Moreover, we propose to first filter the measurements in order to reduce the effect of the multipath conditions. The proposed method is evaluated using both simulated data and real-life recordings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.