Abstract

To reduce information exchange requirements in smart grids, an event-triggered communication-based distributed optimization is proposed for economic dispatch. In this work, the $\theta$ -logarithmic barrier-based method is employed to reformulate the economic dispatch problem, and the consensus-based approach is considered for developing fully distributed technology-enabled algorithms. Specifically, a novel distributed algorithm utilizes the minimum connected dominating set (CDS), which efficiently allocates the task of balancing supply and demand for the entire power network at the beginning of economic dispatch. Further, an event-triggered communication-based method for the incremental cost of each generator is able to reach a consensus, coinciding with the global optimality of the objective function. In addition, a fast gradient-based distributed optimization method is also designed to accelerate the convergence rate of the event-triggered distributed optimization. Simulations based on the IEEE 57-bus test system demonstrate the effectiveness and good performance of proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.