Abstract

In this article, the secondary frequency restoration as well as active power allocation problem in an ac microgrid (MG) system subject to bounded varying-time delays are addressed. For each distributed generator, a distributed dynamic event-triggered control law is proposed. Besides, benefiting from using dynamic event-triggered mechanisms, the communication burdens can be measurably reduced. By analyzing the resulting system through a Lyapunov function, a sufficient condition is established to ensure stability and achieve asymptotic frequency restoration and active power sharing. Based on the sufficient condition, an explicit tolerable upper bound of all time delays is obtained. The upper bound can be used for the MG system design guideline in the planning phase, which would enhance real time operating safety. Beisides, no Zeno behavior will exist. To test the proposed control method, the experiments are conducted on the real-time simulator OPAL-RT with DSP controllers. The results demonstrate the effectiveness and performance of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.