Abstract
We consider the problem of distributed estimation of a deterministic vector parameters using in clustered wireless sensor networks (WSNs). The paper using the method of multipliers in conjunction with a block coordinate descent approach, we demonstrate how the resultant algorithm can be decomposed into a set of simpler tasks suitable for distributed implementation based on maximum likelihood estimators (MLE) in nonlinear and non-Gaussian data models. the iterative algorithms based on the communication between nodes and the head node that generate a local estimation, and the head nodes can be seen as the neighbor node of all the other nodes in the cluster, it can broadcast its estimation in the cluster, and the local iterates converge to the global MLE, We prove that these algorithms have guaranteed convergence to the desired estimator when the sensor links are assumed ideal. Furthermore, corroborating simulations demonstrate the merits of the novel distributed estimation algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.