Abstract

This paper presents a distributed energy-saving management strategy for green cellular networks. During off-peak periods, an energy-saving operation is activated. A subset of base stations (BSs) in the network enters an energy-saving state, i.e., switched-off mode, while satisfying traffic demands without discontinuity of user services. To this end, the remaining operating BSs should compensate for the coverage holes by taking over the responsibility of user service. Such a scenario can be formulated into a combinatorial optimization that maximizes the overall energy savings of the network. To address this computationally demanding task, we develop a distributed algorithm that provides an efficient solution by using a state-of-the-art technique based on a message-passing framework. The simulation results confirm considerable energy-saving gains over previously existing techniques and prove the viability for this strategy for self-organizing green cellular networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call