Abstract
Distributed dynamic strain measurement based on optical frequency-domain reflectometry is proposed. The technique makes use of the wide scanning range of a tunable laser source in a short sweeping time, and subdivides the overall spectrum into narrower frequency windows. The advantage of subdividing the laser spectral range is to improve the measurement uncertainty induced by the laser wavelength difference between repeated scans. The noise-limited dynamic strain resolution is investigated experimentally, indicating that a minimum detectable strain is less than 200 nε for a spatial resolution of 20 cm. By measuring the subdivided spectral shifts in the time sequence along the sensing fiber, the dynamic strain can be properly quantified over a 30 m measurement range for a highest sampling rate of up to 50 Hz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.