Abstract

Distributed dynamic average consensus is investigated under quantized communication data. We use a uniform quantizer with constant quantization step-size to deal with the saturation caused by the dynamic consensus error and propose a communication feedback-based distributed consensus protocol suitable for directed time-varying topologies to make the internal state of each agent's encoder consistent with the output of its neighbors' decoder. For the case where the communication topology is directed, balanced and periodically connected, it is shown that if the difference of the reference inputs satisfies some boundedness condition, then the designed quantized dynamic consensus protocol can ensure the states of all the agents achieve dynamic average consensus with arbitrarily small steady state error by properly choosing system parameters. The lower bound of the required quantization levels and the method to choose the system parameters are also presented. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.