Abstract

The convergence rate and applicability to directed graphs with interaction topologies are two important features for practical applications of distributed optimization algorithms. In this article, a new kind of fast distributed discrete-time algorithms is developed for solving convex optimization problems with closed convex set constraints over directed interaction networks. Under the gradient tracking framework, two distributed algorithms are, respectively, designed over balanced and unbalanced graphs, where momentum terms and two time-scales are involved. Furthermore, it is demonstrated that the designed distributed algorithms attain linear speedup convergence rates provided that the momentum coefficients and the step size are appropriately selected. Finally, numerical simulations verify the effectiveness and the global accelerated effect of the designed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.