Abstract

In this paper we study translucent optical networks as an alternative to fully transparent and fully opaque optical networks. In the former networks, a technique called sparse placement is used to overcome the lightpath blocking caused by the signal quality degradation, using much less regenerators, which must strategically be placed, in contrast to a fully opaque network. In this paper we propose a sparse placement algorithm based on two requirements. The first one is signal regeneration necessary to re-amplify, reshape, and retime the optical signals after some predefined transparent distance in order to successfully receive the signals at the destination node. The other is load balance of the traffic in the network aimed at efficient usage of the network capacity resources. We apply a distributed Dijkstra routing algorithm which dynamically changes weights of links during the process of locating regeneration capable nodes. We compare the performance of the proposed algorithm with commonly used sparse placement algorithms through simulation experiments. The benefits are such that load balancing of the network traffic is fully utilized, and with technological development it will be sufficient to equip up to 30% of nodes in the network with electronic regenerations in order to have the same performance as in an opaque network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call