Abstract

Nowadays, large-scale optimization problems are ubiquitous in many research fields. To deal with such problems efficiently, this paper proposes a distributed differential evolution with adaptive mergence and split (DDE-AMS) on subpopulations. The novel mergence and split operators are designed to make full use of limited population resource, which is important for large-scale optimization. They are adaptively performed based on the performance of the subpopulations. During the evolution, once a subpopulation finds a promising region, the current worst performing subpopulation will merge into it. If the merged subpopulation could not continuously provide competitive solutions, it will be split in half. In this way, the number of subpopulations is adaptively adjusted and better performing subpopulations obtain more individuals. Thus, population resource can be adaptively arranged for subpopulations during the evolution. Moreover, the proposed algorithm is implemented with a parallel master-slave manner. Extensive experiments are conducted on 20 widely used large-scale benchmark functions. Experimental results demonstrate that the proposed DDE-AMS could achieve competitive or even better performance compared with several state-of-the-art algorithms. The effects of DDE-AMS components, adaptive behavior, scalability, and parameter sensitivity are also studied. Finally, we investigate the speedup ratios of DDE-AMS with different computation resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.