Abstract

AbstractDistributed denial-of-service (DDoS) attacks on the Internet of Things (IoT) pose a serious threat to several web-based networks. The intruder’s ability to deal with the power of various cooperating devices to instigate an attack makes its administration even more multifaceted. This complexity can be further increased while lots of intruders attempt to overload an attack against a device. To counter and defend against modern DDoS attacks, several effective and powerful techniques have been used in the literature, such as data mining and artificial intelligence for the intrusion detection system (IDS), but they have some limitations. To overcome the existing limitations, in this study, we propose an intrusion detection mechanism that is an integration of a filter-based selection technique and a machine learning algorithm, called information gain-based intrusion detection system (IGIDS). In addition, IGIDS selects the most relevant features from the original IDS datasets that can help to distinguish typical low-speed DDoS attacks and, then, the selected features are passed on to the classifiers, i.e. support vector machine (SVM), decision tree (C4.5), naïve Bayes (NB) and multilayer perceptron (MLP) to detect attacks. The publicly available datasets as KDD Cup 99, CAIDA DDOS Attack 2007, CONFICKER worm, and UNINA traffic traces, are used for our experimental study. From the results of the simulation, it is clear that IGIDS with C4.5 acquires high detection and accuracy with a low false-positive rate.

Highlights

  • Distributed denial-of-service (DDoS) attacks on the Internet of Things (IoT) pose a serious threat to several web-based networks

  • We analyze the results of the simulation of the intrusion detection system (IDS) technique based on information gain (IGIDS) to determine its effectiveness in the detection of DDoS attacks

  • The volume of information is the most appreciated component for both organizations and users, and DDoS attacks cause a boundless risk in the network

Read more

Summary

Introduction

Abstract: Distributed denial-of-service (DDoS) attacks on the Internet of Things (IoT) pose a serious threat to several web-based networks. The intruder’s ability to deal with the power of various cooperating devices to instigate an attack makes its administration even more multifaceted. This complexity can be further increased while lots of intruders attempt to overload an attack against a device. Information gain is based on the entropy of the system which estimates the uncertainty of a random variable [25]. It is predominantly employed in feature selection as filter to rank attributes with respect to their IG value. Eq (2) computes the conditional entropy of two events R and S, while R has value r: H (︂ S )︂ R

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.