Abstract

Case-Based Reasoning (CBR) is one of most successful applied AI technologies of recent years. Although many CBR systems reason locally on a previous experience base to solve new problems, in this paper we focus on distributed retrieval processes working on a network of collaborating CBR systems. In such systems, each node in a network of CBR agents collaborates, arguments and counterarguments its local results with other nodes to improve the performance of the system's global response. We describe D2ISCO: a framework to design and implement deliberative and collaborative CBR systems that is integrated as a part of jCOLIBRI 2 an established framework in the CBR community. We apply D2ISCO to one particular simplified type of CBR systems: recommender systems. We perform a first case study for a collaborative music recommender system and present the results of an experiment of the accuracy of the system results using a fuzzy version of the argumentation system AMAL and a network topology based on a social network. Besides individual recommendation we also discuss how D2ISCO can be used to improve recommendations to groups and we present a second case of study based on the movie recommendation domain with heterogeneous groups according to the group personality composition and a group topology based on a social network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.