Abstract

Compartmental ordinary differential equation (ODE) models are used extensively in mathematical biology. When transit between compartments occurs at a constant rate, the well-known linear chain trick can be used to show that the ODE model is equivalent to an Erlang distributed delay differential equation (DDE). Here, we demonstrate that compartmental models with non-linear transit rates and possibly delayed arguments are also equivalent to a scalar distributed delay differential equation. To illustrate the utility of these equivalences, we calculate the equilibria of the scalar DDE, and compute the characteristic function-- without calculating a determinant. We derive the equivalent scalar DDE for two examples of models in mathematical biology and use the DDE formulation to identify physiological processes that were otherwise hidden by the compartmental structure of the ODE model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.