Abstract

Improving generalization ability in multi-robot formation can reduce repetitive training and calculation. In this paper, we study the multi-robot formation problem with the ability to generalize the target position. Since the generalization ability of neural network is directly proportional to spatial dimension, we adopt the strategy of using different networks to solve different objectives, so that the network learning can focus on the learning of one objective to obtain better performance. In addition, this paper presents a distributed deep reinforcement learning method based on soft actor–critic algorithm for solving multi-robot formation problem. At the same time, the formation evaluation assignment function is designed to adapt to distributed training. Compared with the original algorithm, the improved algorithm can get higher reward cumulative values. The experimental results show that the proposed algorithm can better maintain the desired formation in the moving process, and the rotation design in the reward function makes the multi-robot system have better flexibility in formation. The comparison of control signal curve shows that the proposed algorithm is more stable. At the end of the experiments, the universality of the proposed algorithm in formation maintenance and formation variations is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.