Abstract

In the internet-based e-business environment, most business data are distributed, heterogeneous and private. To achieve true business intelligence, mining large amounts of distributed data is necessary. Through a thorough literature review, this paper identifies four main issues in distributed data mining (DDM) systems for e-business and classifies modern DDM systems into three classes with representative samples. To address these identified issues, this paper proposes a novel DDM model named DRHPDM (Data source Relevance-based Hierarchical Parallel Distributed data mining Model). In addition, to improve the quality of the final result, the data sources are divided into a centralized mining layer and a distributed mining layer, according to their relevance. To improve the openness, cross-platform ability, and intelligence of the DDM system, web service and multi-agent technologies are adopted. The feasibility of DRHPDM was verified by building a prototype system and applying it to a web usage mining scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.