Abstract

We propose a distributed data management scheme for large data visualization that emphasizes efficient data sharing and access. To minimize data access time and support users with a variety of local computing capabilities, we introduce an adaptive data selection method based on an enhanced time-space partitioning (ETSP) tree that assists with effective visibility culling, as well as multiresolution data selection. By traversing the tree, our data management algorithm can quickly identify the visible regions of data, and, for each region, adaptively choose the lowest resolution satisfying user-specified error tolerances. Only necessary data elements are accessed and sent to the visualization pipeline. To further address the issue of sharing large-scale data among geographically distributed collaborative teams, we have designed an infrastructure for integrating our data management technique with a distributed data storage system provided by logistical networking (LoN). Data sets at different resolutions are generated and uploaded to LoN for wide-area access. We describe a parallel volume rendering system that verifies the effectiveness of our data storage, selection and access scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.