Abstract
Wireless Sensor Networks (WSNs) have gained significant attention in recent years due to their wide range of applications, such as environmental monitoring, smart agriculture, and structural health monitoring. With the increasing volume of data generated by WSNs, efficient data analytics techniques are crucial for improving the overall performance and reducing energy consumption. This paper presents a novel distributed data analytics approach for WSNs using fuzzy logic-based machine learning. The proposed method combines the advantages of fuzzy logic for handling uncertainty and imprecision with the adaptability of machine learning techniques. It enables sensor nodes to process and analyze data locally, reducing the need for data transmission and consequently saving energy. Furthermore, this approach enhances data accuracy and fault tolerance by incorporating the fusion of heterogeneous sensor data. The proposed technique is evaluated on a series of real-world and synthetic datasets, demonstrating its effectiveness in improving the overall network performance, energy efficiency, and fault tolerance. The results indicate the potential of our approach to be applied in various WSN applications that demand low-energy consumption and reliable data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.