Abstract

This paper investigates the distributed coordinated attitude tracking control problem for spacecraft formation with time-varying communication delays under the condition that the dynamic leader spacecraft is a neighbor of only a subset of follower spacecrafts. We consider two cases for the leader spacecraft: i) the attitude derivative is constant, and ii) the attitude derivative is time-varying. In the first case, a distributed estimator is proposed for each follower spacecraft by using its neighbors’ information with communication delays. In the second case, to express the dynamic leader’s attitude, an improved distributed observer is developed to estimate the leader’s information. Based on the estimated values, adaptive coordinated attitude tracking control laws are designed to compensate for parametric uncertainties and unknown disturbances. By employing the Lyapunov–Krasovskii functional approach, the attitude tracking errors and estimation errors are proven to converge to zero asymptotically. Numerical simulations are presented to illustrate the effectiveness of theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.