Abstract

This paper develops a distributed cooperative optimization model for multiple virtual power plant (VPP) operations based on multi-stage robust optimization and proposes a distributed solution methodology based on the combination of the alternating direction method of multipliers (ADMMs) and column-and-constraint generation (CCG) algorithm to solve the corresponding optimization problem. Firstly, considering the peer-to-peer (P2P) electricity transactions among multiple VPPs, a deterministic cooperative optimal operation model of multiple VPPs based on Nash bargaining is constructed. Secondly, considering the uncertainties of photovoltaic generation and load demand, as well as the non-anticipativity of real-time scheduling of VPPs in engineering, a cooperative optimal operation model of multiple VPPs based on multi-stage robust optimization is then constructed. Thirdly, the constructed model is solved using a distributed solution methodology based on the combination of the ADMM and CCG algorithms. Finally, a case study is solved. The case study results show that the proposed method can realize the optimal scheduling of renewable energy in a more extensive range, which contributes to the promotion of the local consumption of renewable energy and the improvement of the renewable energy utilization efficiency of VPPs. Compared with the traditional deterministic cooperative optimal operation method of multiple VPPs, the proposed method is more resistant to the risk of the uncertainties of renewable energy and load demand and conforms to the non-anticipativity of real-time scheduling of VPPs in engineering. In summary, the presented works strike a balance between the operational robustness and operational economy of VPPs. In addition, under the presented works, there is no need for each VPP to divulge personal private data such as photovoltaic generation and load demand to other VPPs, so the security privacy protection of each VPP can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.