Abstract
This paper considers the simultaneous attack of a stationary target by multiple missiles. A novel fixed-time distributed guidance law based on the proportional navigation (PN) guidance law is designed by integrating a consistent control technique into the guidance strategy. This guarantees that the time-to-go of the missile becomes consistent. The guidance law adopts a discrete design, and a compensation item driven by normal acceleration is added to tangential acceleration. This eliminates the potential singularity problem when the heading angle is zero before the consistency is obtained, and thus the multiple missile system still converges in fixed time. In addition, the proposed guidance law can be applied to both undirected and directed graphs. Furthermore, two improved guidance laws are proposed to improve the robustness of the system against adverse effects caused by input delays and topology switching failures and to provide a theoretical proof. Finally, a simulation is used to verify the performance of the distributed guidance law and its robustness against the above failures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.