Abstract

This paper analyzes distributed control protocols for first- and second-order networked dynamical systems. We propose a class of nonlinear consensus controllers where the input of each agent can be written as a product of a nonlinear gain, and a sum of nonlinear interaction functions. By using integral Lyapunov functions, we prove the stability of the proposed control protocols, and explicitly characterize the equilibrium set. We also propose a distributed proportional-integral (PI) controller for networked dynamical systems. The PI controllers successfully attenuate constant disturbances in the network. We prove that agents with single-integrator dynamics are stable for any integral gain, and give an explicit tight upper bound on the integral gain for when the system is stable for agents with double-integrator dynamics. Throughout the paper we highlight some possible applications of the proposed controllers by realistic simulations of autonomous satellites, power systems and building temperature control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.