Abstract

The series photovoltaic-battery-hybrid (PVBH) system is considered as a promising solution to better integrating distributed energy sources. However, the state-of-the-art controls are either highly dependent on the communication, by which real-time control variables should be transmitted among all converters, or only suitable for PVBH systems with unity power factor. Accordingly, a novel distributed control is proposed for islanded PVBH systems in this article. First, a PQ decoupling control is introduced, enabling the control of individual converters with only local measurements. Then, a droop controller is implemented in the battery converter, allowing the system to participate in regulating the islanded grid (voltage and frequency). A reactive power distribution method is subsequently introduced to equalize power sharing among the converters. Additionally, two anti-overmodulation loops are developed to address the overmodulation issue of both PV converters and the battery converter. With the proposed method, only a few variables with very slow dynamics should be transmitted, and the communication burden can be significantly reduced, leading to higher reliability to some extent. Experimental results have validated the effectiveness of the proposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.