Abstract

In this paper, a distributed asymptotic tracking control strategy is investigated by establishing filters and barrier function-based consensus control scheme to address the control of heterogenous power-chained multiagent systems (MASs) under a directed graph subject to the unknown input deadzone nonlinearities and unknown control coefficients. First, to generate estimation information from the leader, a two-order filter is exploited for every agent which solves the difficultly of the time-varying control coefficients in multiagent systems with a directed topology. Then, based on the two-order filters, prescribed performance method and barrier functions are utilized to establish the distributed tracking protocol to handle the power-chained deadzone input nonlinearities, such that the MAS can reach the global consensus while guaranteeing the prescribed tracking error performance. Using the Lyapunov stability theorem, the proof of the convergence is accomplished rigorously. Ultimately, the efficacy and advantage of the devised method are validated by two simulation examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call