Abstract

This paper studies the complexity of distributed construction of purely additive spanners in the CONGEST model. We describe algorithms for building such spanners in several cases. Because of the need to simultaneously make decisions at far apart locations, the algorithms use additional mechanisms compared to their sequential counterparts. We complement our algorithms with a lower bound on the number of rounds required for computing pairwise spanners. The standard reductions from set-disjointness and equality seem unsuitable for this task because no specific edge needs to be removed from the graph. Instead, to obtain our lower bound, we define a new communication complexity problem that reduces to computing a sparse spanner, and prove a lower bound on its communication complexity. This technique significantly extends the current toolbox used for obtaining lower bounds for the CONGEST model, and we believe it may find additional applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.