Abstract

This paper focuses on the problem of recursive nonlinear least squares parameter estimation in multi-agent networks, in which the individual agents observe sequentially over time an independent and identically distributed (i.i.d.) time-series consisting of a nonlinear function of the true but unknown parameter corrupted by noise. A distributed recursive estimator of the \emph{consensus} + \emph{innovations} type, namely $\mathcal{CIWNLS}$, is proposed, in which the agents update their parameter estimates at each observation sampling epoch in a collaborative way by simultaneously processing the latest locally sensed information~(\emph{innovations}) and the parameter estimates from other agents~(\emph{consensus}) in the local neighborhood conforming to a pre-specified inter-agent communication topology. Under rather weak conditions on the connectivity of the inter-agent communication and a \emph{global observability} criterion, it is shown that at every network agent, the proposed algorithm leads to consistent parameter estimates. Furthermore, under standard smoothness assumptions on the local observation functions, the distributed estimator is shown to yield order-optimal convergence rates, i.e., as far as the order of pathwise convergence is concerned, the local parameter estimates at each agent are as good as the optimal centralized nonlinear least squares estimator which would require access to all the observations across all the agents at all times. In order to benchmark the performance of the proposed distributed $\mathcal{CIWNLS}$ estimator with that of the centralized nonlinear least squares estimator, the asymptotic normality of the estimate sequence is established and the asymptotic covariance of the distributed estimator is evaluated. Finally, simulation results are presented which illustrate and verify the analytical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.